1 Fig. 11.1 shows a village green which is bordered by 3 straight roads $A B, B C$ and $C A$. The road AC runs due North and the measurements shown are in metres.

Not to scale

Fig. 11.1
(i) Calculate the bearing of B from C, giving your answer to the nearest 0.1°.
(ii) Calculate the area of the village green.

The road $A B$ is replaced by a new road, as shown in Fig. 11.2. The village green is extended up to the new road.

Not to
scale

Fig. 11.2
The new road is an arc of a circle with centre O and radius 130 m .
(iii) (A) Show that angle AOB is 1.63 radians, correct to 3 significant figures.
(B) Show that the area of land added to the village green is $5300 \mathrm{~m}^{2}$ correct to 2 significant figures.

2

Fig. 4
For triangle ABC shown in Fig. 4, calculate
(i) the length of BC , [3]
(ii) the area of triangle ABC .

3 (a)

Not to scale

Fig. 11.1

A boat travels from P to Q and then to R . As shown in Fig. 11.1, Q is 10.6 km from P on a bearing of 045°. R is 9.2 km from P on a bearing of 113°, so that angle QPR is 68°.

Calculate the distance and bearing of R from Q .
(b) Fig. 11.2 shows the cross-section, EBC, of the rudder of a boat.

Fig. 11.2
BC is an arc of a circle with centre A and radius 80 cm . Angle $\mathrm{CAB}=\frac{2 \pi}{3}$ radians.
EC is an arc of a circle with centre D and radius $r \mathrm{~cm}$. Angle CDE is a right angle.
(i) Calculate the area of sector ABC .
(ii) Show that $r=40 \sqrt{3}$ and calculate the area of triangle CDA.
(iii) Hence calculate the area of cross-section of the rudder.

(i) Fig. 10.1 shows the first logo ABCD . It is symmetrical about AC .

Find the length of $A B$ and hence find the area of this logo.
(ii) Fig. 10.2 shows a circle with centre O and radius 12.6 cm . ST and RT are tangents to the circle and angle SOR is 1.82 radians. The shaded region shows the second logo.

Show that $\mathrm{ST}=16.2 \mathrm{~cm}$ to 3 significant figures.
Find the area and perimeter of this logo.
(i) The course for a yacht race is a triangle, as shown in Fig. 11.1. The yachts start at A , then travel to B , then to C and finally back to A .

Not to scale

Fig. 11.1
(A) Calculate the total length of the course for this race.
(B) Given that the bearing of the first stage, AB , is 175°, calculate the bearing of the second stage, BC.
(ii) Fig. 11.2 shows the course of another yacht race. The course follows the arc of a circle from P to Q , then a straight line back to P . The circle has radius 120 m and centre O ; angle $\mathrm{POQ}=136^{\circ}$.

Fig. 11.2

